skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klein, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prize-Collecting TSP is a variant of the traveling salesperson problem where one may drop vertices from the tour at the cost of vertex-dependent penalties. The quality of a solution is then measured by adding the length of the tour and the sum of all penalties of vertices that are not visited. We present a polynomial-time approximation algorithm with an approximation guarantee slightly below 1.6, where the guarantee is with respect to the natural linear programming relaxation of the problem. This improves upon the previous best-known approximation ratio of 1.774. Our approach is based on a known decomposition for solutions of this linear relaxation into rooted trees. Our algorithm takes a tree from this decomposition and then performs a pruning step before doing parity correction on the remainder. Using a simple analysis, we bound the approximation guarantee of the proposed algorithm by$$(1+\sqrt{5})\big /2 \approx 1.618$$ ( 1 + 5 ) / 2 1.618 , the golden ratio. With some additional technical care we further improve the approximation guarantee to 1.599. Furthermore, we show that for the path version of Prize-Collecting TSP (known as Prize-Collecting Stroll) our approach yields an approximation guarantee of 1.6662, improving upon the previous best-known guarantee of 1.926. 
    more » « less
  2. Vygen, J; Byrka, J (Ed.)
    One of the most famous conjectures in combinatorial optimization is the four-thirds conjecture, which states that the integrality gap of the subtour LP relaxation of the TSP is equal to $$\frac43$$. For 40 years, the best known upper bound was $1.5$$. Recently, Karlin, Klein, and Oveis Gharan \cite{KKO21b} showed that the max entropy algorithm for the TSP gives an improved bound of $$1.5 - 10^{-36}$. In this paper, we show that the approximation ratio of the max entropy algorithm is at least 1.375, even for graphic TSP. Thus the max entropy algorithm does not appear to be the algorithm that will ultimately resolve the four-thirds conjecture in the affirmative, should that be possible. 
    more » « less
  3. Del Pia, Alberto; Kaibel, Volker (Ed.)
    A long-standing conjecture for the traveling salesman problem (TSP) states that the integrality gap of the standard linear programming relaxation of the TSP (sometimes called the Subtour LP or the Held-Karp bound) is at most 4/3 for symmetric instances of the TSP obeying the triangle inequality. In this paper we consider the half-integral case, in which a feasible solution to the LP has solution values in {0,1/2,1} . Karlin, Klein, and Oveis Gharan [9], in a breakthrough result, were able to show that in the half-integral case, the integrality gap is at most 1.49993; Gupta et al. [6] showed a slight improvement of this result to 1.4983. Both of these papers consider a hierarchy of critical tight sets in the support graph of the LP solution, in which some of the sets correspond to cycle cuts and the others to degree cuts. Here we show that if all the sets in the hierarchy correspond to cycle cuts, then we can find a distribution of tours whose expected cost is at most 4/3 times the value of the half-integral LP solution; sampling from the distribution gives us a randomized 4/3-approximation algorithm. We note that known bad cases for the integrality gap have a gap of 4/3 and have a half-integral LP solution in which all the critical tight sets in the hierarchy are cycle cuts; thus our result is tight. 
    more » « less
  4. Del Pia, Alberto; Kaibel, Volker (Ed.)
  5. Kalai, Yael Tauman (Ed.)
  6. null (Ed.)